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Abstract

It is well-known that cryptography is a branch of secrecy in science andmathematics, which usu-
ally preserves the confidentiality and authenticity of the information, where its growth is parallel
with the rapid evolution of the internet and communication. As one of the prominent public key
cryptosystems, the Elliptic Curve Cryptosystem (ECC) offers efficiency and complexmathemat-
ical operations with a smaller bit compared to other types of public key schemes. Throughout
the evolution of cryptography, ElGamal Elliptic Curve Cryptosystem (ElGamal ECC) revolved
from ElGamal public key scheme for user efficiency and privacy. In this study, an improved
method will be introduced using ElGamal ECC as the foundation with the incorporation of the
Bézier curve coefficient matrix, where the ElGamal ECC value is considered as the control point
of the Bézier curve during the encryption and decryption processes. The proposed method is
designed to develop a robust ciphertext system algorithm for better efficiency and to increase
the level of protection in ElGamal ECC. In this paper, the performance of the proposed method
is compared with the normal ElGamal ECC. The results of this study show that the proposed
method offers no significant difference in terms of the implementation time during the encryp-
tion and decryption process. However, it does offer extra layers of protection when operated
with complex mathematical operations.
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1 Introduction

Goldsmith [7] highlighted the evolution of recent technologies, especially in Information and
Communication Technology (ICT) such as telephone, radio, and internet with wired connection
are rapidly advancing towards more wireless devices. This advancement of technology required
huge improvements in data privacy and security, especially since the current wireless technol-
ogy has a higher transfer rate and faster connection. Here, the security defence in ICT is crucial
since it deals with the risk of attacks and data breaches, remarkably when the data are related to
confidential information.

Moreover, Stinson and Paterson [17] defined cryptography as the study of secure communi-
cation techniques that allow only mutually trusted parties to view its content. In addition, Diffie
and Hellman first established their public key cryptography concept in 1976 to preserve the au-
thentication of messages in an unsecured network [4]. In the same year, ElGamal [5] instituted
his public key cryptosystem and signature scheme to the world where the system introduced had
some limitations since it is only based on discrete logarithms. Furthermore, Koblitz [9] andMiller
[11] were the first to initiate the idea of applying elliptic curve group over a finite field in pub-
lic key cryptography concept, which is then widely established as Elliptic Curve Cryptography
(ECC). Later, Koblitz developed the ElGamal Elliptic Curve Cryptosystem (ElGamal ECC) as an
improvement of the ElGamal public key scheme through the elliptic curve group.

Many studies and methods had been developed by researchers to increase the level of secu-
rity in cryptography such as the application of Bézier curve in cryptosystem by Ghadi and Al-
Rammahi (2020) [6], Srividya and Akhila (2014) [16], and Abdul Wahab and Satter Jaber (2016)
[19]. However, these studies lack important information on how to embed the Bézier curve coef-
ficient into the cryptosystem to improve its security level. In 2016, Abdul Wahab and Satter Jaber
applied Bézier curve with a chaotic system technique to generate an encryption key for a secure
communication [19]. Meanwhile, Ghadi and Al-Rammahi manipulated the formula of Menezes-
Vanstone Elliptic Curve Cryptosystem (MVECC) with the mathematical notation of quadratic
Bézier curve as their proposed method in [6].

Previous studies that have applied Bézier curve in their proposed cryptosystems used only
the mathematical notation of Bézier curves. The usage of the messages as the control points of
the Bézier curve is yet to be experimented. Therefore, this paper introduced the application of
ElGamal ECC with an additional level of security that applies the values as the control points on
Bézier curve, where it is not restricted based on specific numbers of data. This method also offers
the flexibility for users to send different types of messages (alphabetical characters, numerical, or
mixed). This study compares the implementation time and mathematical operations of the sug-
gested method with the original ElGamal ECC. The proposed method also compares the method
introduced in [6] since both methods used Bézier curve for encryption and decryption process.

This paper is structured as follows. In Section 2, the mathematical notation of ECC with its
operations is introduced, alongside the background of Bézier curve with the Bézier coefficient
matrix and its inverse. Section 2 also introduces the ElGamal ECC scheme. On the other hand,
the proposed improved method using Bézier coefficient matrix is briefly demonstrated in Section
3. Next, three different examples of messages using the improved method are provided in Section
4. The comparison of our proposed method with existing methods is then discussed in Section 5.
Finally, the implemented method will be summarised and concluded in Section 6.
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2 Methodology

2.1 Elliptic Curve Cryptography (ECC)

In an Elliptic Curve, E is a graph of the equation such that

E : y2 = x3 + ax2 + bx+ c, (1)

where a, b, c are constants that can satisfy users’ appropriate set. However, for ECC,we specifically
define p as a prime number, which yields

E : y2 ≡ x3 + ax+ b (mod p), (2)

where a, b ∈ Fp, p ̸= 2, 3, and satisfy the condition 4a3+27b2 ̸= 0 (mod p). The elliptic curve group
E(Fp) is the set of all points (x, y) along Equation (2) with special point O at infinity as defined
in Hankerson et al. (2004) [8].

Two points are defined as P = (x1, y1) and Q = (x2, y2) such that P ̸= Q, where these points
lie along the elliptic curve E as defined in Equation (2). The summation of P and Q results in a
new point, R, which also lies on the elliptic curve E as in Equation (3):

P +Q = R = (x3, y3), (3)

such that
λ =

y2 − y1
x2 − x1

, (4)

x3 ≡ (λ2 − x1 − x2) (mod p), (5)

y3 ≡ (λ(x1 − x3)− y1) (mod p). (6)

Let k be an integer with point P = (x1, y1) that lies on E. The scalar multiplication of the
elliptic curve can be defined as follows

kP = P + P + . . .+ P︸ ︷︷ ︸
k − times

, (7)

where point P will be added to itself k multiple times. For example, the scalar multiplication of
9P can be written as 9P = 2(2(2P )) + P as mentioned in Al-Saffar and Said (2015) [13].

Let P = (x, y), then the inverse of the point P is Q, which can be defined as follows:

Q = −P = (x,−y), (8)

such that P +Q = O.

Dawahdeh et al. (2016) [3] defined the number of points on the curve as the order of an elliptic
curve and can be denoted as #E. Note that, Trappe and Washington (2006) [18] suggested that
the value of #E is includes a point at infinity to assure the elements on the elliptic curve occur
along the y-axis. In the selection process of based point in ECC, Al-Saffar and Said (2013) [1]
concluded that all points on E can be a base point if #E is a prime number.
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2.2 ElGamal Elliptic Curve Cryptosystem (ElGamal ECC)

ElGamal ECC is the evolution of ElGamal public key cryptosystem, which is based on elliptic
curve over a finite prime field introduced by Koblitz (1987) [9]. Let E(Fp) be an elliptic curve
group over a finite prime field with publicly known point D such that D lies on E. Firstly, both
parties (user A and user B) need to choose their respective private keys, va and vb such that va, vb ∈
[1, p−1]. Then, user Bwill generate his public key, PB using his private key, vb such that PB = vbD.
Secretly, both users need to calculate the symmetric key, K such that K = vaPB = vbPA. Then,
message, M will be encrypted; and ciphertext message, C will be sent to user B together with his
public key, PA by user A as follows:

C = {m,PA} = {(x1, y1), (x2, y2)},

wherem = M +K and PA = vaD.Upon receiving the ciphertext, C, user B will calculateK from
PA and decrypt the ciphertext into message, m as follows:

m−K = M +K −K = M. ■

2.3 Bézier Curve

In Marsh (2006) [10] and Safaruddin and Misro (2021) [12], Bézier polynomial of degree n
over parameter t can be defined explicitly as follows:

P (t) =

n∑
i=0

PiB
n
i (t), 0 ≤ t ≤ 1, (9)

such that Pi are the list of control points and Bn
i (t) are the Bernstein basis functions where

Bn
i (t) = (

n
i
)ti(1− t)n−i, 0 ≤ t ≤ 1,

with i = 0, 1, . . . , n. The degree of the polynomial will be based on the number of control points
defined on the curve. A polynomial, P (t) of degree n over interval t ∈ [0, 1] can be written as
monomial form as shown below:

P (t) = A0 +A1t+ · · ·+Ant
n, (10)

where Ai are the coefficients of the polynomial. Salomon (2007) [15] highlighted that P (t) can be
illustrated in the matrix form as follows

P (t) = TMPi,

P (t) =
[
1 t . . . tn−1 tn

]

a0 b0 . . . z0
a1 b1 . . . z1
...

...
. . .

...
an bn . . . zn


P0

...
Pn

 , (11)

where T consists of monomial basis, M is the Bézier coefficient matrix, and Pi are control points
of the curve.
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Based on Equation (11), the matrices coefficient of Linear Bézier (LB), Quadratic Bézier (QB),
and Cubic Bézier (CB) curves and its inverse are given as follows

LB =

[
1 0
−1 1

]
, LB−1 =

[
1 0
1 1

]
. (12)

QB =

 1 0 0
−2 2 0
1 −2 1

 , QB−1 =

1 0 0
1 1

2 0
1 1 1

 . (13)

CB =


1 0 0 0
−3 3 0 0
3 −6 3 0
−1 3 −3 1

 , CB−1 =


1 0 0 0
1 1

3 0 0
1 2

3
1
3 0

1 1 1 1

 . (14)

3 The Proposed Method

This section introduces a modification of the ElGamal ECC. This modification will improve
the level of security in the ElGamal cryptosystem and maintain the system’s efficiency. The coef-
ficient matrix of the Bézier curve will be embedded into ElGamal ECC on this proposed method.
This technique also offers flexibility for users to send a secret plaintext regardless in terms of text
messages or numbers/coordinates. Multiple levels of security are available for this algorithm,
depending on the type of messages involved. All messages will have to go through two levels of
security, which are ElGamal ECC and Bézier curve. In contrast, additional security will be applied
if the user plans to send a text message by converting each character of the message into decimal
values via American Standard Code for Information Interchange (ASCII).

Supposed twoparties (userA anduser B) communicate some confidential information through
an unsecured network. Firstly, an elliptic functionEwith the domain parameters {a, b, p,DP}was
agreed upon between the two parties publicly such that a, b are the coefficients of E and p is the
prime number that satisfies Equation (2). At the same time, DP is the generator point. Note that
if the order of the elliptic curve, #E, is a prime number, then every point on E can be chosen as
the generator point,DP . In order to send user B (the receiver) the message,M , both parties need
to choose a random private key from the interval [1, p−1]. Assume user A’s private key is va while
user B is vb such that va, vb ∈ [1, p − 1]. Hence, the public key for each user can be defined as
follows:

PA = vaDP, (15)

PB = vbDP. (16)

From each other’s public key, each user can compute the secret key (symmetric key), K = (x, y)
by multiplying their private key with the other party’s public key, given by

K = vaPB = vbPA = vavbDP = (x, y). (17)

Encryption

Supposed user A wants to send a message to user B such that the message is in numerical,
text, or the combination text and numerical form. Note that if the messages are in the form
of alphabetical characters or the combination between numbers and characters, user A firstly
needs to convert the message into decimal value via ASCII and form a new set of numbers, M =
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(m1,m2,m3,m4, . . . ,mu), which consists of the decimal values of the messages. On the other
hand, if user A plans to send a numerical message such as coordinates or some sets of num-
bers, user A can directly form M where M = (m1,m2,m3,m4, . . . ,mu) are the list of numerical
messages. To avoid confusion for the second party, this method also offers users to differentiate
whether the message was supposed to be sent in text form or numerical form, where the final
ciphertext will be sent with an alphabet "S" (string) to the user B.

Since the ECC requires two-dimensional coordinates, the list ofmessages,M , needs to be parti-
tioned into groups of two. These groups are denoted as gi. Meanwhile, the collection of the groups
is defined as G. User A needs to partition M into groups of two such that G = (g1, g2, g3, . . . , gf ),
where g1 = (m1,m2), g2 = (m3,m4) until gf = (mu−1,mu). The purpose of this partition of two
is to apply ElGamal ECC on G to produce the first ciphertext, CE . Note that CE consists of Of ,
which are the values of each G, and is added with the symmetric key, K.

CE = G+K

O1 = g1 +K

= (m1,m2) + (x, y)

= (m1 + x,m2 + y)

= (c1, c2).

By applying the above steps of ElGamal ECC onto each element G, CE can be written as CE =
(c1, c2, c3, c4, . . . , cu−1, cu). After user A obtained the ciphertext CE , user A needs to undergo Al-
gorithm 1 to generate the final ciphertext, F , and send it to user B. In Algorithm 1, a Cubic Bézier
(CB) coefficient matrix will be used for the additional protection. CB coefficient matrix is a 4× 4
matrix requiring four control points. Therefore, CE will be partitioned into groups of four, where
each of the groups will be a dot product with the CB coefficient matrix. The collections of the
groups are defined as C̄F such that C̄F = (C1, C2, . . . , CN ) is for messages with lengths of mul-
tiple of 4. Meanwhile, CF = (C̄F , CU ) is the collections of the groups for lengths that are not of
multiple of 4 where CU is the remaining group elements of F which consist of a group of three,
two or cu, last element of CE . Correspondingly, CU will be a dot product with Quadratic Bézier
(QB) or Linear Bézier (LB) coefficient matrix, depending on the number of elements, while cu will
be multiplied with p.

Algorithm 1 Encryption by using Bézier coefficient for final ciphertext F .
INPUT: CE

OUTPUT: F
procedure Bézier encryption (final encryption)

if l (mod 4) = 0 then ▷ l Length of CE

C̄F ← CE ▷ C̄F = (C1, C2, . . . , CN )

F ←
∑3

i=0 B
3
i (t) · C̄F ▷ By Eq. (14)

else
CF ← CE ▷ CF = (C̄F , CU )
if l (mod 4) = 1 then

F ← (
∑3

i=0 B
3
i (t) · C̄F , p ∗ cu)

else l (mod 4) ̸= 1 or 0
F ← (

∑3
i=0 B

3
i (t) · C̄F ,

∑n−1
i=0 Bn−1

i (t) · CU ) ▷ By Eq. (12) or (13)
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Note that the results of Algorithm 1 will be the final ciphertext that will be sent to user B,
which are F = (f1, f2, f3, f4, f5, f6, f7, f8, . . . , fu−3, fu−2, fu−1, fu) for numerical message and F =
(f1, f2, f3, f4, f5, f6, f7, f8, . . . , fu−3, fu−2, fu−1, fu, S) for text or combination messages. Here, "S"
is added to differentiate the types of messages received by user B.

Decryption

Upon receiving ciphertext, F from user A, user B will calculate the symmetric key, K = (x, y)
as Equation 17 before undergo Algorithm 2 to generate first level plaintext, PF from F such that
PF = (q1, q2, q3, q4, q5, q6, q7, q8, . . . , qu). Note that if the ciphertext, F consist of an alphabet "S",
the alphabet must be removed from F and ASCII will be used at the end of the decryption process
in order to get the original message. As shown in Algorithm 1, the ciphertext, F , needs to be
partitioned into groups of four. In Algorithm 2, the collection of the groups will be defined as H̄ ,
such that H̄ = (H1, H2, . . . ,HN ) for ciphertext with lengths of multiple of 4. On the other hand,
H = (H̄,HU ) is the collections of the group where the lengths are not multiples of 4 and HU is a
group of remaining elements of F which is a group of three, two or single element, fu.

Algorithm 2 Decryption by Bézier coefficient for the first ciphertext PF .
1: INPUT: F
2: OUTPUT: PF

3: procedure Bézier decryption (first decryption)
4: if L (mod 4) = 0 then ▷ L is the length of F
5: H̄ ← F ▷ H̄ = (H1, H2, . . . ,HN )

6: PF ←
∑3

i=0 B
3
i (t)

−1 · H̄ ▷ By Eq. (14)
7: else if L (mod 4) = 1 then
8: H ← F ▷ H = (H̄,HU )

9: PF ← (
∑3

i=0 B
3
i (t)

−1 · H̄, fu
p )

10: else if L (mod 4) ̸= 1 or 0 then
11: H ← F
12: PF ← (

∑3
i=0 B

3
i (t)

−1 · H̄,
∑n−1

i=0 Bn−1
i (t)−1 ·HU ) ▷ By Eq. (12) or (13)

Finally, after PF was discovered, user B needs to do the final decryption, which is related to
ElGamal ECC such that, PF needs to be partitioned into PG. It is groups of two such that PG =
(g1, g2, g3, . . . , gf ), where g1 = (q1, q2), g2 = (q3, q4) until gf = (qu−1, qu) before the summation of
the inverse symmetric key. Using Equation (8), the inverse of symmetric key,K can be written as

K−1 = (x,−y).

Finally, user B can read message, M as follows:

M = PG +K−1

M1 = g1 +K−1

= (q1, q2) + (x,−y)
= (q1 + x, q2 − y)

= (m1,m2).

By applying above steps on each element PG, finally, user B will be able to read the message,
M such that M = (m,m2,m3,m4, . . . ,mu). Note that if the ciphertext, F received consists of the
letter "S", user B needs to convert the value of M into characters in ASCII.
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4 Implementation Examples for Proposed Method

Supposed two parties (Alice and Bob) accede in using the proposed elliptic curve function, E
for their communication via unsecured network such that

E : y2 = x3 + x+ 2547 (mod 3023),

where a = 1, b = 2547, and p = 3023, satisfying the condition 4a3 + 27b2 = 4(13) + 27(25472) =
175154647 (mod 3023) = 2027 ̸= 0 and #E = 3083. Thus, they set DP = (2237, 2480) to be their
base point.

Key Generation

Alice: Chooses the private key, va = 2313 ∈ [1, 3022] and computes her public key, PA =
vaDP = 2313(2237, 2480) = (934, 29).

Bob: Chooses the private key, vb = 1236 ∈ [1, 3022] and computes his public key, PB = vbDP =
1236(2237, 2480) = (1713, 1709).

Symmetric key (secretly by both),K: By using their own private key and other party’s public
key, the symmetric key,K can be obtained as follows: K = vaPB = vbPA = (2537, 1632).

4.1 Numerical Messages

Encryption (Alice)

Supposed Alice needs to send a secret message, M to Bob such that

M = (567, 78, 2000, 1004, 877, 991, 10, 6).

Since the message is in numerical form, she may directly separate the numbers into groups of two,
G and get the first ciphertext, CE such that CE = G+K, where

G = (g1, g2, g3, g4)

g1 = (567, 78)

...
g4 = (10, 6).

Then,
O1 = (567, 78) + (2537, 1632)

...
O4 = (10, 6) + (2537, 1632).

Hence, CE = (2010, 708, 494, 335, 890, 1355, 197, 1570), which is the first ciphertext. By applying
Algorithm 1, Alice will calculate the final ciphertext, F and sends it to Bob for decryption:

C̄F = (C1, C2);

C1 = (2010, 708, 494, 335),

C2 = (890, 1355, 197, 1570).
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Therefore,

F =

3∑
i=0

B3
i (t) · C̄F ,

F = CB · C̄F ,

F = CB · (C1, C2),

F = (2010,−3906, 3264,−1033, 890, 1395,−4869, 4154).

Decryption (Bob)

Upon receiving the ciphertext, F from Alice, Bob first needs to calculate the symmetric key,K
and apply the Algorithm 2 in order to obtain the first plaintext, PF as given below:

H̄ = (H1, H2);

H1 = (2010,−3906, 3264,−1033),
H2 = (890, 1395,−4869, 4154).

Then,

PF =

3∑
i=0

B3
i (t)

−1 · H̄,

PF = CB−1 · H̄,

PF = CB−1 · (H1, H2),

PF = (2010, 708, 494, 335, 890, 1355, 197, 1570).

Therefore, using Equation (8), the inverse of K can be written as

K−1 = (2537,−1632).

Then, Bob needs to separate PF into groups of two, PG and calculate it using ElGamal ECC to get
the message, M

PG = (g1, g2, g3, g4);

g1 = (2010, 708)

...
g4 = (197, 1570)

such that
M = PG +K−1;

M1 = (2010, 708) + (2537,−1632)
= (2010 + 2537, 708− 1632)

= (567, 78)

...
M4 = (197, 1570) + (2537,−1632)

= (197 + 2537, 1570− 1632)

= (10, 6).

Hence, Bob will get Alice’s message, which is

M = (567, 78, 2000, 1004, 877, 991, 10, 6). ■
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4.2 Text Message

Encryption (Alice)

Suppose Alice wishes to share a secret plaintext Computerwith Bob via an unsecured network.
First, she should convert each character of the text messageComputer into decimal values of ASCII,
as given below:

Computer
ASCII−−−−→ 67, 111, 109, 112, 117, 116, 101, 114.

Then, let M = (67, 111, 109, 112, 117, 116, 101, 114) be a set of text messages in decimal values of
ASCII. Next,M is separated into groups of two,G, inwhich the second ciphertext,CE is calculated
given by CE = G+K, where

G = (g1, g2, g3, g4);

g1 = (67, 111)

...

g4 = (101, 114).

Thus,
O1 = (67, 111) + (2537, 1632)

...

O4 = (101, 114) + (2537, 1632).

Hence, CE = (2660, 472, 2606, 2558, 1050, 94, 1967, 674) will be the second ciphertext. Next, Alice
needs to undergo Algorithm 1 and add the character "S" at the end of F before sending it to Bob
as an alert of a text message.

C̄F = (C1, C2);

C1 = (2660, 472, 2606, 2558),

C2 = (1050, 94, 1967, 674).

Then,

F =

3∑
i=0

B3
i (t) · C̄F ,

F = CB · C̄F ,

F = CB · (C1, C2),

F = (2660,−6564, 12966,−6504, 1050,−2868, 8487,−5995, S).

Decryption (Bob)

When Bob receives the ciphertext F from Alice, Bob needs to calculate K before undergoing
Algorithm 2 in order to get the first level plaintext, PF such that

H̄ = (H1, H2);

H1 = (2660,−6564, 12966,−6504),
H2 = (1050,−2868, 8487,−5995).
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Then,

PF =

3∑
i=0

B3
i (t)

−1 · H̄,

PF = CB−1 · H̄,

PF = CB−1 · (H1, H2),

PF = (2660, 472, 2606, 2558, 1050, 94, 1967, 674).

Therefore, PF will be the first ciphertext that Bob receives. Then, using Equation (8), the in-
verse of K can be written as

K−1 = (2537,−1632).

Then, Bob needs to separate PF into groups of two, PG and calculate it by using ElGamal ECC to
get the message, M , as follows:

PG = (g1, g2, g3, g4);

g1 = (2660, 472)

...

g4 = (1967, 674),

such that
M = PG +K−1;

M1 = (2660, 472) + (2537,−1632)

= (2660 + 2537, 472− 1632)

= (67, 111)

...

M4 = (1967, 674) + (2537,−1632)

= (1967 + 2537, 674− 1632)

= (101, 114).

Thus,M = (67, 111, 109, 112, 117, 116, 101, 114). Note that thisM is not the final answer since this
message was meant to be a text message. Subsequently, using ASCII, Bob will then convert the
number in the set M into a text message

67, 111, 109, 112, 117, 116, 101, 114
ASCII−−−−→ Computer. ■

4.3 Combination of Numerical and Text Message

Encryption (Alice)

Suppose Alice wants to send Covid19 to Bob such that the plaintext is the combination of text
message and numericalmessage. First, Alice needs to convert the plaintext intoM , a set of decimal
values of the message converted via ASCII

Covid19
ASCII−−−−→ 67, 111, 118, 105, 100, 49, 57,
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where M = (67, 111, 118, 105, 100, 49, 57). Then, M is separated into groups of two, G and the
second ciphertext is calculated, CE such that CE = G+K, where

G = (g1, g2, g3, 57);

g1 = (67, 111)

...
g3 = (100, 49).

Thus,
O1 = (67, 111) + (2537, 1632)

...
O3 = (100, 49) + (2537, 1632),

while
O4 = 57 + 2537.

Therefore,CE = (2660, 472, 2127, 1906, 2196, 2198, 2594)will be the second ciphertext for this mes-
sage. By applying Algorithm 1, Alice sends F to Bob such that

CF = (C1, C2);

C1 = (2660, 472, 2127, 1906),

C2 = (2196, 2198, 2594).

Then, since C2 consists of 3 numbers, F can be written as follows, with "S" at the end.

F = (

3∑
i=0

B3
i (t) · C1,

2∑
i=0

B2
i (t) · C2),

F = (CB · C1, QB · C2),

F = (2660,−6564, 11529,−5719, 2196, 4, 394, S).

Decryption (Bob)

Upon receiving the ciphertext, F , from Alice, Bob applies Algorithm 2 in order to generate the
first level plaintext, PF , which can be written as follows:

H = (H1, H2);

such that

H1 = (2660,−6564, 11529,−5719),
H2 = (2196, 4, 394).

Hence, each set of H needs to undergo dot product with the inverse of Bézier coefficient in
order to get the first plaintext, PF , given below:

PF = (

3∑
i=0

B3
i (t)

−1 ·H1,

2∑
i=0

B2
i (t)

−1 ·H2),

PF = (CB−1 ·H1, QB−1 ·H2),

PF = (2660, 472, 2127, 1906, 2196, 2198, 2594).
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Then, after calculating the symmetric key,K, as in Equation (8), the inverse ofK can bewritten
as

K−1 = (2537,−1632).

Correspondingly, Bob needs to separate PF into groups of two, PG with one leftover element
before using ElGamal ECC to get the message, M :

PG = (g1, g2, g3, 2594);

g1 = (2660, 472)

...

g3 = (2196, 2198),

such that
M = PG +K−1;

M1 = (2660, 472) + (2537,−1632)

= (2660 + 2537, 472− 1632)

= (67, 111)

...

M3 = (2196, 2198) + (2537,−1632)

= (2196 + 2537, 2198− 1632)

= (100, 49)

with
M4 = 2594− 2537 = 57.

Hence, M = (67, 111, 118, 105, 100, 49, 57). Since M is not the final answer, Bob needs to convert
M via ASCII to read the message

67, 111, 118, 105, 100, 49, 57
ASCII−−−−→ Covid19. ■

5 Result and Discussion

Several comparisons are made in this section to discuss our proposed method by analysing
it against the implementation time and required operations of the normal ElGamal ECC. This
simulation uses Wolfram Mathematica (Version 12.3.1 for Mac OS X x86/ 64-bit). The results of
ElGamal ECC [1] and Ghadi and Al-Rammahi’s MVECC (GAMVECC) in [6] will be compared.

Table 1 shows the implementation time for normal ElGamal ECC on Wolfram Mathematica
versus Al-Saffar’s on MATLAB (version 7.10.0.499/ 32-bits). As mentioned in [1], cryptosystem
offers different implementation times depending on the input size, length of algorithms or code,
as well as the type of language and processors used throughout the encryption and decryption.

495



N. H. M. Ismail and M. Y. Misro Malaysian J. Math. Sci. 16(3): 483–499 (2022) 483 - 499

Table 1: The implementation time of encryption and decryption for normal ElGamal ECC using Wolfram Mathematica (Author’s) and
MATLAB (Al-Saffar’s).

ElGamal ECC (Author’s) ElGamal ECC (Al-Saffar’s)
Messages/
Times

Encryption
Time (Sec)

Decryption
Time (Sec)

Encryption
Time (Sec)

Decryption
Time (Sec)

(8228,5025) 0.190054 0.113603 0.292592 0.176354
(8219,7676) 0.184969 0.105382 0.290878 0.170969
(7570,7470) 0.186887 0.105246 0.283419 0.203476

Table 2 illustrates the implementation time on GAMVECC in [6] using different platforms.
Based on Tables 1 and 2, the time taken for encryption and decryption on Wolfram Mathematica
(Version 12.3.1 for Mac OS X x86/ 64-bit) is much faster than MATLAB (version 7.10.0.499/ 32-
bits) by Al-Saffar and MATLAB R2018b (version 9.5.0.944444/ 64-bits) in [6]. Note that Tables 1
and 2 are presented to compare the gaps between the two platforms before continuing to examine
the proposed method on Wolfram Mathematica.

Table 2: The implementation time of encryption and decryption process for MVECC usingWolframMathematica (Author’s) andMATLAB
(GAMVECC).

GAMVECC (Author’s) GAMVECC
Text charac-
ters/ Times

Encryption
Time (Sec)

Decryption
Time (Sec)

Encryption
Time (Sec)

Decryption
Time (Sec)

1000-bits 0.039579 0.019957 16.9943 5.2962
3000-bits 0.040894 0.021078 59.5675 18.8306
5000-bits 0.042974 0.022233 85.3577 26.5149

Table 3 illustrates the time taken for the messages to be encrypted and decrypted between
the proposed method and the original ElGamal ECC via Wolfram Mathematica. Based on the
results in Table 3, it is concluded that there is no significant difference between the time taken
for encryption and decryption between both methods, where two of the messages took a slightly
faster time to decrypt, and the other message took a faster time to encrypt. This concludes that
the proposed method suggests a higher level of security with no significant difference in time
performance compared to the normal ElGamal ECC.

Table 3: The time implementation in encryption and decryption between proposed method and ElGamal ECC by Wolfram Mathematica.

Proposed method ElGamal ECC
Messages/
Times

Encryption
Time (Sec)

Decryption
Time (Sec)

Encryption
Time (Sec)

Decryption
Time (Sec)

(8228,5025) 0.186777 0.113733 0.190054 0.113603
(8219,7676) 0.187144 0.103956 0.184969 0.105382
(7570,7470) 0.188981 0.104205 0.186887 0.105246

In contrast to Table 3, Table 4 shows distinguishable results between the currently proposed
method andGAMVECC.After studying the comparison between the twomethods, it is concluded
that there is a huge gap between the time taken for encryption anddecryption, where the proposed
method consumes a longer time for encryption and decryption. Furthermore, although the pro-
posed method requires a longer implementation time, it is known that the implementation time
for the original ElGamal ECC is significantly longer compared to the original MVECC in [1]. This

496



N. H. M. Ismail and M. Y. Misro Malaysian J. Math. Sci. 16(3): 483–499 (2022) 483 - 499

confirms the validity of the comparison in Table 4 since the gap between both methods is well
established. In addition, this method offers a higher level of security with a lower mathematical
complexity compared to Ghadi’s method.

Table 4: The time implementation for the proposed method and Ghadi’s MVECC in encryption and decryption process via WolframMath-
ematica.

Proposed method GAMVECC
Text
charac-
ters/Times

Encryption
Time (Sec)

Decryption
Time (Sec)

Encryption
Time (Sec)

Decryption
Time (Sec)

1000-bits 0.188085 0.123242 0.039579 0.019957
3000-bits 0.195034 0.125143 0.040894 0.021078
5000-bits 0.193191 0.12756 0.042974 0.022233

Since the proposed method offers two different workflows between text and numerical mes-
sages, Table 5 presents the justification for the proposition of this improved method. It is known
that numbers can be converted into decimal values via ASCII. However, in this paper, the authors
purposely separate the workflows of encryption and decryption, where only text and combina-
tion messages will undergo ASCII. Excluding ASCII conversion for numerical messages is shown
to be more beneficial for the proposed method, where the implementation time is much faster as
opposed to the inclusion of the ASCII conversion. It also shows that workflow without ASCII for
numerical messages offers a smaller size of bytes compared to the workflow with ASCII.

Table 5: The time implementation and size of bytes for numerical messages via ASCII.

Proposed
Method

General Numerical ASCII

Size(bytes) 64,116 67,068
Messages Encryption

Time (Sec)
Decryption
Time (Sec)

Encryption
Time (Sec)

Decryption
Time (Sec)

(8228,5025) 0.186777 0.113733 0.195252 0.121745
(8219,7676) 0.187144 0.103956 0.192871 0.111378
(7570,7470) 0.188981 0.104205 0.199272 0.111613

Table 6: The required operations for the ElGamal ECC, GAMVECC, and the proposed method.

ElGamal ECC GAMVECC Proposed method
Encryption Decryption Encryption Decryption Encryption Decryption
2 Add 2Add+ 1

Inv
6 Mult +
4Add+ 4
Sub

6 Mult +
8 Sub + 2
Inv

2 Add
+ 1 Dot
Product

2 Add
+ 1 Inv
+ 1 Dot
Product

∗Note that the number of mathematical operations for the proposed method varies depending on the
length of the message involved

Finally, Table 6 summarised the mathematical complexity between all three methods in the
encryption and decryption process. This table presents the number of operations involved in the
proposed method together with ElGamal ECC and GAMVECC. Based on Table 6, it can be con-
cluded that the proposed method possesses more complex computational operations compared
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to the original ElGamal ECC and GAMVECC. Note that, the number of mathematical operations
for the proposed method varies depending on the length of the message involved. The proposed
method can be deduced to be more efficient as it offers extra operation with one Dot Product
operation for each encryption and decryption compared to the original ElGamal ECC.

6 Conclusions

In this paper, a new technique of ElGamal ECC combined with Bézier curve coefficient matrix
has been introduced to provide a safer and rather efficient information exchanger for the encryp-
tion and decryption processes. The proposed method is regarded to be more flexible as it allows
users to send messages in various forms. The proposed method also suggested differentiating
the type of messages to obtain more accurate results, especially when dealing with numerical
messages. This is because the numerical messages can directly use the proposed method with-
out converting it to ASCII form. This proposed technique is believed to have a strong level of
security with lower mathematical complexity since it offers a few additional operations with no
significant difference in the implementation time compared to the original method of ElGamal
ECC. However, extra layers of security consume more hardware storage due to a large number of
key sizes. Thus, this has become a limitation of the proposed method. The proposed method is
potentially exposed to side-channel attacks when it converts messages into decimal values using
ASCII. However, the authentication of the messages is expected to be well preserved. For future
studies, we would like to suggest incorporating the Bézier curve coefficient matrix in the MVECC
scheme. Different types of Bézier basis functions, especially trigonometric [2] and fractional [14]
could potentially be explored.
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